
Instructor-Led Training
Course Catalog
March 2024

Virtual • In-Person

General disclaimer
This document presents details about the training offerings from Synopsys at the time of its creation. Synopsys has used reasonable
efforts to ensure that the information provided in this document is accurate and up-to-date, but details and offerings are subject to
change.

This document contains confidential information about Synopsys and its businesses. Copies of this document may only be provided, and
disclosure of the information contained in it may only be made, with written prior agreement from Synopsys.

Ownership and disposal
The information contained in this document is owned by Synopsys. The recipient shall dispose of the data as confidential waste and/or
return the document to Synopsys upon request.

 | synopsys.comInstructor-Led Training Catalog | March 2024

The Synopsys difference
Synopsys helps development teams build secure, high-quality software, minimizing risks while maximizing speed and productivity.
Synopsys, a recognized leader in application security, provides static analysis, software composition analysis, and dynamic analysis
solutions that enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source components, and
application behavior.

For more information about the Synopsys
Software Integrity Group, visit us online at
www.synopsys.com/software.

Synopsys, Inc.
675 Almanor Ave
Sunnyvale, CA 94085

U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=

 | synopsys.comInstructor-Led Training Catalog | March 2024

Table of contents

Introduction . 4
Our Curriculum. 4
Delivery Models. 5

Emerging Technologies. 6
Principles of AI/ML Security . 7

Fundamentals. 8
Principles of Software Security. 9
Attack and Defense. 10
OWASP Top 10. 11

Mobile. 12
Defending Android. 13
Defending iOS. 14

Cloud Platforms . 15
Securing Azure. 16
Securing AWS. 17
Securing Containers With Docker. 18
Securing Kubernetes. 19

Defensive Strategies. 20
Securing Code Using Static Analysis. 21
Securing Open Source . 22
Securing Software with DevSecOps. 23

Languages and Platforms. 24
Defending C . 25
Defending C++. 26
Defending Golang . 27
Defending Java Web Applications. 28
Defending JavaScript and HTML5. 29
Defending C#.NET Web Applications. 30

Attacking Strategies. 31
Attacking Networks. 32
Attacking Web Applications. 33
Hackathon. 34
Red Teaming. 35

Requirements, Architecture, and Training . 36
Champions Workshop . 37
Threat Modeling. 38

Embedded and IoT. 39
Embedded Systems Security. .40

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Instructor-Led Training Catalog | March 2024 | synopsys.com | 4

Introduction
Synopsys' broad range of software security products and professional services affords us the unique position to create, maintain, and
deliver the best software security training for our customers. Our instructional design process puts practicing consultants in charge of
courses in their respective areas of expertise. Course owners use their experience in solving customers’ challenges to inform course
direction. Similarly, we use certified practicing consultants as instructors. Instructors are able to share real-life examples from previous
customer interactions with the students.

What this means to you is that our courses aren’t just textbook best practices; our courses have experience baked in from design through
delivery.

Synopsys is also the creator and leader of the BSIMM (https://www.bsimm.com). Insights from the BSIMM, as well as from BSIMM
assessors, influence both course and catalog direction.

Our Curriculum
Synopsys’ curriculum is a series of complementary courses designed to meet your organization’s needs. You can select the courses that
best match your audience’s level of experience, roles, and development platforms.

Our courses are grouped into the following software security topics:
•	 Emerging Technologies: This section covers the latest trends and innovations in cybersecurity that can help you protect your software

products from current and future threats such as AI/ML.
•	 Fundamentals: Your software security journey starts here. Fundamentals courses are designed to get you started.
•	 Cloud Platforms: Just because your application makes use of cloud providers for hosting doesn’t automatically mean the application

is deployed securely. The settings and options for deployment can be daunting for developers and operations new to the cloud
environment. Securely configuring the deployment is vital to the security of your customers and data.

•	 Defensive Strategies: Software development and deployment is happening at a blistering pace. To ensure software is not being sent
out the door with security defects processes must be put in place to ensure the software is tested thoroughly as the software winds its
way through the development process. Courses in defensive strategies ensure that the latest best practices are being deployed in your
environment.

•	 Attacking Strategies: Understanding how adversaries look for weaknesses in our software is key to building security in. These courses
are designed to help you put on your proverbial malicious hat.

•	 Languages and Platforms: Knowing the weaknesses in your chosen language or platform is the only way to avoid those weaknesses
that lead to security vulnerabilities. Languages and Platforms highlight those weaknesses then show you how to avoid them using
industry best practices.

•	 Mobile: Your application will be downloaded and installed on thousands of devices. Are you sure you’ve implemented the correct
security features? Explore what features should be enabled and when to secure your mobile applications.

•	 Requirements, Architecture, and Training: The earliest stages of the SDLC are requirements, architecture, and training. Courses in this
category are designed to help you catch security problems early when they are easiest and cheapest to fix.

•	 Embedded and IOT: Today's world is more connected than ever, which means vulnerabilities are everywhere. Learn how to apply
security engineering practices and techniques in the development of embedded, Internet of Things (IoT), or other integrated systems.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.linkedin.com/showcase/7944784/

Instructor-Led Training Catalog | March 2024 | synopsys.com | 5

Delivery Models
Virtual or In-Person: Your Choice
If you have a distributed workforce, your participants can avoid travel and time away from the office using our Virtual Instructor-Led
Training (vILT). vILT is separated into shorter sessions to optimize participant engagement. vILT can be delivered over consecutive
working days or on a weekly basis depending on your team's preference. Virtual training is a cost-conscious training delivery method
for supporting your employees' professional development while working remotely. Our instructors are trained to engage your audience
through group discussion and interactive hand-on labs designed to simulate real-world environments. Instructors can make course
adjustments to better complement the needs, interests, and experience level of your participants.

If you prefer traditional instructor-led training, our certified instructors will travel to the location of your choice.

Instructor-led courses are held on your schedule in the format that works best for you.

Synopsys uses a number of training strategies to assist in participant engagement, including hand-on labs using our
cloud-based VM solution, breakout groups, live demonstrations, white boarding, videos, and polling.

VIRTUAL ILT CLASSROOM ILT

Instructor type Full-time security professional Full-time security professional

Activities Hands-on labs Hands-on labs

Student materials Digital Digital

Location of students Distributed and remote On-site

Delivered Globally Globally

Travel costs $0.00 Varies

Number of students supported Up to 20 Up to 20

Training topics available Comprehensive catalog Comprehensive catalog

Training duration 4 hour sessions for multiple days 8 hours in one day

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.linkedin.com/showcase/7944784/

 | synopsys.com | 6

Description
The Securing Web Services course is intended for developers, engineers, and architects who
work with backend web services APIs which may not necessarily have a User Interface (UI) or
a UI component.

This course examines web services concepts and then takes a deep dive into several web
services technologies such as WS-Security, Security Assertion Markup Language (SAML),
and OAuth. This course also covers risks inherent to web services and how to properly threat
model web services. Web service security is examined from the perspective of the message,
the channel, and the service itself. The lab component of this course allows students to gain
an understanding of and practice with some of the real-world security issues inherent to web
services.

The lab is intentionally written with a programming language and framework that are popular
but with which most developers are not familiar: Python and Flask. This allows students to
focus on secure design and secure coding concepts without being too concerned with the
implementation details of a particular language.

This is a comprehensive and stand-alone course on web services. Many concepts taught
in this course are covered in depth in other courses, such as Threat Modeling and OAuth. If
you are building a multi-day curriculum for web service developers, please reach out to the
Synopsys training team for advice on course selection.

Introductory Principles of Software Security
for COBOLNew in 2022

Intended Audience
•	 Developers
•	 DevSecOps
•	 Architects

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Instructor-Led Training Catalog | March 2024

Emerging
Technologies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 7Instructor-Led Training Catalog | March 2024

Description
The Principles of AI/ML Security course aims to equip participants with an understanding
of the baseline ideas for securing this greenfield technology, focusing on generative AI and
its applications, industry trends, governance standards, and the risks that affect both the
business and the technology itself. Participants will learn about secure integration, model
explainability, and verification techniques, and they will explore common AI/ML architectures
and their specific vulnerabilities. Through labs on penetration testing and threat modeling,
including hands-on exercises in a prebuilt sandbox environment and a hybrid exercise
focusing on Retrieval Augmented Generation/Large Language Model (RAG/LLM) architecture,
attendees will gain practical experience with exploiting and mitigating risks in AI/ML projects
while applying comprehensive threat modeling methodologies to secure AI/ML applications
effectively.

Introduction: This section offers a comprehensive overview of artificial intelligence (AI),
machine learning (ML), and generative AI (GenAI). It provides in-depth definitions and explores
the various types of these technologies. Moreover, the section examines the benefits of these
technologies, including their potential for increasing efficiency, productivity, and innovation.
It also highlights the challenges and potential pitfalls that come with these technologies,
including ethical considerations such as bias, the possibility of misuse, and explainability.

AI/ML Security Risks: This section delves into the vulnerabilities identified in AI/ML projects.
The discussion encompasses issues such as bias, adversarial attacks, and training data
integrity. It also highlights potential threats at different software development life cycle
stages such as at design, development, and deployment. Threats range from bias to data
poisoning and model manipulation. This section also touches on industry standards, including
the OWASP LLM Top 10 and EU standards. Additionally, this section provides insights into
Executive Order 14028 and what we should anticipate from the potential AI security standards
that NIST might introduce in the upcoming year.

Industry Best Practices and Threat Modeling: This section discusses various security
principles and frameworks for AI/ML projects, including secure data acquisition and
management, threat modeling, secure design practices, model explainability and verification,
and applying threat modeling to AI/ML. It also covers common AI/ML architectures such as
image recognition, search, data classification, and specific training methodologies like RAG.

Labs
•	 Hands-on penetration exercise
•	 Hands-on threat modeling exercise

Principles of AI/ML Security
New in 2024

Emerging Technologies

Intended Audience
•	 Architects
•	 Developers
•	 DevSecOps
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Recognize industry standards

and governance
•	 Identify AI/ML security risks at

each development stage
•	 Apply threat modeling

techniques to analyze security
of AI/ML projects

•	 Apply threat modeling
techniques to mitigate risks in
AI/ML projects

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 8

Description
The Securing Web Services course is intended for developers, engineers, and architects who
work with backend web services APIs which may not necessarily have a User Interface (UI) or
a UI component.

This course examines web services concepts and then takes a deep dive into several web
services technologies such as WS-Security, Security Assertion Markup Language (SAML),
and OAuth. This course also covers risks inherent to web services and how to properly threat
model web services. Web service security is examined from the perspective of the message,
the channel, and the service itself. The lab component of this course allows students to gain
an understanding of and practice with some of the real-world security issues inherent to web
services.

The lab is intentionally written with a programming language and framework that are popular
but with which most developers are not familiar: Python and Flask. This allows students to
focus on secure design and secure coding concepts without being too concerned with the
implementation details of a particular language.

This is a comprehensive and stand-alone course on web services. Many concepts taught
in this course are covered in depth in other courses, such as Threat Modeling and OAuth. If
you are building a multi-day curriculum for web service developers, please reach out to the
Synopsys training team for advice on course selection.

Introductory Principles of Software Security
for COBOLNew in 2022

Intended Audience
•	 Developers
•	 DevSecOps
•	 Architects

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Instructor-Led Training Catalog | March 2024

Fundamentals

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 9Instructor-Led Training Catalog | March 2024

The Principles of Software Security course provides the foundation to inspire developers and
other team members to start taking security seriously. This modular course can be delivered
as a full-day offering, or depending on your needs, can be focused on one of the primary
modules as a half-day course. The objective of this course is to identify the obstacles that
software security faces, and how teams can employ successful software security initiatives
within their organization to overcome them.

Introduction module
The half-day Introduction module first identifies current software security problems, and then
addresses the issues by explaining how to infuse software security into the development
process early on. This module elucidates the Synopsys concept of “Building Security In” as
opposed to relying solely on traditional security and testing practices.
•	 Basic software security concepts: Topics include a software security vocabulary, obstacles

to software security, how to build security in, and the importance of a software security
initiative (SSI)

•	 Fundamentals of a SSI: SSI scope, goals, engineering and guidance, vendor management,
software security groups (SSGs), strategy, training, compliance, and metrics

•	 Software security engineering: Three pillars of risk management, touchpoints, and
knowledge, security standards, and training, and how to integrate this learning with your
Waterfall or Agile development approach

Labs
•	 Security hurdles in an ever-connected world of malicious actors

	– Think like an attacker by considering data, network, and functionality of the device
•	 Identify the best defect discovery techniques

	– Scenario: Starting down the road
	– Scenario: We can do more!
	– Scenario: Building security in

Requirements module
The half-day Requirements module focuses on introducing important cost-saving software
security requirements early in the software development life cycle. Students learn the details
of and the causes behind secure coding errors and mistakes in this data-centric module, and
how these software security defects are exploited. They will also learn the practices that help
prevent the most common mistakes.
•	 Essential use cases: Access control requirements for authentication and authorization
•	 Resource management: Ways to protect resources and prevent attacks such as denial of

service and resource management guidelines
•	 Data life cycle: Data protection at every stage of data interpretation (data in use, data at rest,

and data in motion), as well as data input, processing, and output, improper input validation,
input validation approaches and guidance, log injection, output encoding, safe error handling,
protecting the cache, masking sensitive data, and encryption

Labs
•	 Security requirements for use cases:

	– Authentication
	– Authorization
	– Resource management
	– Data interpretation
	– Data in use
	– Data in motion
	– Data at rest

Fundamentals

Intended Audience
•	 Architects
•	 Developers
•	 Managers
•	 QA Engineers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives for the
Introduction Module
At the end of this course, you will
be able to:
•	 Recognize the importance of

software security
•	 Identify the obstacles that

software security faces
•	 Understand the characteristics

of a successful software
security initiative

•	 Describe key software security
activities

Course Objectives for the
Requirements Module
At the end of this course, you will
be able to:
•	 Recognize common attacks on

software
•	 Recognize common solutions

and patterns to mitigate
attacks on data, functionality,
and resources

•	 Recognize security
requirements to mitigate
common vulnerabilities

Principles of Software Security

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
file:///Users/rbay/Downloads/bookmark://_Toc54607009
file:///Users/rbay/Downloads/bookmark://_Toc54607010
file:///Users/rbay/Downloads/bookmark://_Toc54607011

 | synopsys.com | 10Instructor-Led Training Catalog | March 2024

The Attack and Defense course aims to lay the foundation for participants' understanding of
the broader cybersecurity context, and why software attacks are a crucial concern. It focuses
on how the threat landscape has evolved over time, and provides software builders and testers
an in-depth look at standard attacks and their corresponding defenses. Students successfully
completing this course are empowered to solve tricky problems securely in their own
environment by mapping them to known problems and tried-and-tested solutions.

This course introduces common attacks that can be happen to most applications. These
attacks are also seen in different contexts such as web, embedded, thick client, or mobile, and
their standard solutions are discussed in the classroom. Students are then guided to apply this
knowledge to identify attacks and design defenses for a model application throughout the labs.

Protecting data: This section examines the life cycle stages of data, identifies common
attacks for each stage, and explains how to handle common use cases securely.
•	 Data at rest (online and offline attacks): Exploring common ways of storing data, and the

associated attacks targeted to reveal otherwise inaccessible information
•	 Data in motion: Exploring common communication implementations between components,

and attacks that can be performed to eavesdrop on, replay, or modify data
•	 Data interpretation: Exploring the difference between control and data planes, how they

require different approaches of interpretation, and examples of resulting attacks and
countermeasures

•	 Data in use: Exploring attacks on the underlying software, hardware stacks, and physical
world environments that can leak data

Understanding the cybersecurity landscape: This section discusses digital transformation,
smart cities, and their associated threat landscape.

Access control: This section discusses authentication and authorization, and looks at
common methods of identifying a system user and ways of hijacking that identity. It also
examines the controls used to split and combine permissions to achieve business goals while
following the principle of least privilege. And it includes a discussion about the importance of
keeping audit logs.

Resource management: This section highlights the importance of software performance
considerations in the context of intentional misuse and abuse. How much stress can a malicious
user put on the system? Does that user always require a rich pool of resources to do so?

Open source software: Risks from open source software are discussed in this section,
including:
•	 Open source software use
•	 Common attacks
•	 Standard defenses
•	 Common pitfalls

Labs
•	 Password hash cracking: Students run a password hacking program called

John the Ripper (JtR)
•	 SSL scan: Students use a free tool called Qualys SSL Scan to test the security strength of an

SSL certificate used to encrypt communication of a website
•	 Intercept HTTP request/response: Students examine one of the most important tools of web

security testing: the local HTTP proxy
•	 Session ID entropy: Students look at the entropy of the session ID in the Bank of Insecurities

Fundamentals

Intended Audience
•	 Architects
•	 Developers
•	 Managers
•	 QA Engineers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Recognize common attacks on

software
•	 Recognize common solutions

and patterns for mitigating
these attacks

•	 Recognize how to avoid
common vulnerabilities

Attack and Defense

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 11Instructor-Led Training Catalog | March 2024

This course focuses on the most important security defects found in web applications, covering
all issues in the latest OWASP Top 10 list. Each topic describes a vulnerability and provides
guidance for remediation. This course also provides demonstrations and practical hands-on
exercises where students learn what impact these security issues can have on web applications.

What is the OWASP Top 10?
Taxonomies provide a common vocabulary for professionals to use when discussing software
security vulnerabilities. The OWASP Top Ten list is the most widely used taxonomy for web
application security. The OWASP Top Ten covers the most critical web application security
defects. It is created by security experts from around the world who have shared their
expertise to produce this list.

OWASP Top 10
This is the main section and covers the 10 most critical web application security risks, as
defined in the latest OWASP Top 10:
•	 A01 Broken Access Control

	– Authentication vs. authorization, privilege escalation, tampering
•	 A02 Cryptographic Failures

	– Failures related to cryptography often leading to sensitive data exposure or system
compromise

•	 A03 Injection
	– Dangers of mixing data with code
	– Cross-Site Scripting resulting from unencoded, unvalidated, and untrusted user-supplied data

•	 A04 Insecure Design
	– Risks related to design flaws
	– Adding the required controls to your system to build a solid foundation for the rest of
your application stack since security holes can exist in your application even before you
write a single line of code

•	 A05 Security Misconfiguration
	– Misconfigured servers, lack of knowledge on installed features
	– Specific type of Server-Side Request Forgery (SSRF) attack

•	 A06 Vulnerable and Outdated Components
	– Why and how does this happen?

•	 A07 Identification and Authentication Failures
	– Broken authentication and session management

•	 A08 Software and Data Integrity Failures
	– Regarding assumptions related to software updates, critical data, and CI/CD pipelines
without verifying integrity

	– Causes of deserialized vulnerabilities
•	 A09 Security Logging and Monitoring Failures

	– Secure logging and monitoring
•	 A10 Server-Side Request Forgery (SSRF)

	– Dangers of remote resources specified by user input

Labs and Demos
This course includes a variety of labs and demos for students to practice their skills.

Intended Audience
•	 Architects
•	 Managers
•	 QA Engineers
•	 Web Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the flaws and

weaknesses covered in the
OWASP Top 10

•	 Understand how attackers
exploit these flaws and
weaknesses

•	 Understand how to protect
against these issues in your
applications by applying safer
design patterns, coding, and
testing practices

OWASP Top 10Fundamentals

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Mobile

 | synopsys.com | 13Instructor-Led Training Catalog | March 2024

The Defending Android course begins with a foundational overview of the Android platform,
its architecture, and the security model, and then builds on that to discuss Android-specific
risks. The core of the course is defensive programming techniques for preventing common
application security risks, which are explored within the framework of the OWASP Top 10
Mobile 2024 Security Project.

The Android platform, architecture, and security model: Students learn about the Android
operating system, application runtime, application components, kernel-level security,
application-level security, and the Trusted Execution Environment.

The OWASP Mobile Security Project: This section teaches students about the software risks
in the Android platform based on the OWASP Mobile Security Project.

Defensive programming techniques for Android: For each risk examined in this section,
students will be able to recognize affected code, understand how to remediate the risk,
and make the changes in the code to mitigate the risk. There are several knowledge-check
quizzes in this section. Application risks specific to the Android platform include permissions,
intents, activities, broadcast receivers, content providers, services, logging, web views, and file
handling.

Labs
Each lab is followed by a question and answer session.
•	 Attacks and defense on a malicious application

	– Exploiting the content provider with remediation
	– Exploiting the broadcast receiver with remediation
	– Exploiting the exported activity with remediation

•	 Android platform-specific defensive programming addressing M2 and M5
	– Extract sensitive information stored by the application
	– Identify information leakage risks in the logs
	– Discover risks for surrounding data and credential storage

•	 Application security defensive programming for M6, M8, M9, and M10
	– Reverse-engineer the insecure application, tamper with the authorization mechanism,
and compile the application again

	– Discover different client-side injection risks

Mobile

Intended Audience
•	 Mobile Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the Android

platform
•	 Understand Android security

features
•	 Understand risks relevant to

the Android platform
•	 Apply defensive programming

techniques

Defending Android

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 14Instructor-Led Training Catalog | March 2024

Mobile Defending iOS

The Defending iOS course begins with an overview of the iOS platform, the securities that are
built in, and how they have evolved over the many iterations of the iOS operating system. Next,
the course walks through common iOS application security concerns and discusses how best
to mitigate or remediate such issues. The course looks at the risk, the code that implements
the risk, and code examples for the issues and remediation steps.

The iOS platform, architecture, and security model
•	 Architecture

	– Describe the iOS operating system: XNU kernel, architecture
	– Describe the iOS application runtime: Development components
	– Describe the layers of the iOS SDK
	– Identify the components of iOS applications: Application package (“ipa” file), application
types, components, storage, and interprocess communication

	– Describe iOS storage and IPC choices
•	 Security controls

	– Describe OS-level security: UNIX security, sandboxing, FairPlay DRM, code signing,
keychain services, and touch ID

	– Describe application-level security: Address space layout randomization, nonexecutable
data pages, stack canaries, iOS SDK built-in protections, privacy controls, and local
authentication framework

•	 Risk landscape
	– Common iOS application security risks
	– Reverse engineering: Tools, and defenses
	– Jailbreaking: Anti-jailbreaking controls
	– Attacks against touch ID

Defensive programming for common iOS application risks
•	 Insecure handling of URL schemes
•	 Insecure network communication
•	 Data leakage
•	 Weak authentication/authorization
•	 Weak cryptography
•	 Buffer overflows
•	 Improper input validation and data representation

Labs
•	 Data leak risks

	– Information leakage—logging exercise
	– Credentials stored in plist
	– Credentials stored in SQLite database

•	 Crypto
	– Hard coded keys
	– Keychain

Note: Students are requested to have a Mac with OS version 10.15 (Catalina) or higher and
running the latest version of Xcode.

Intended Audience
•	 Mobile Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Recognize iOS application

security issues
	– Understand the iOS

platform
	– Understand iOS security

features
	– Understand the iOS risk

landscape
•	 Apply defensive programming

techniques

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Cloud Platforms

 | synopsys.com | 16Instructor-Led Training Catalog | March 2024

Cloud Platforms Securing Azure

In the Securing Azure course, students learn how to secure Azure infrastructure as a service
(IaaS). This course initially presents a brief overview of the Azure infrastructure offerings, and
then dives into how to secure them. In hands-on labs, students learn how to spot an insecure
Azure configuration and fix it.

Introduction to Azure cloud and security considerations: This section covers:
•	 Cloud service, deployment, and shared responsibility models
•	 Risks, security capabilities and security considerations

Identity and access management: This section describes how identity and access
management are implemented in Azure. Some topics include security considerations, general
best practices, Azure AD hardening, privileged identity, management, monitoring, and policy.

Networking: This section discusses how to implement and secure virtual networking
resources. Some topics include: security considerations, isolation of resources, protection
of data in transit, access control, rules, virtual network service endpoints, firewalls, and
monitoring.

Storage: This section explores how a storage account in Azure enables access to its storage
solutions. Some topics include security considerations, encryption for data at rest and in
transit, data plane security, management plane security, availability, logging and monitoring,
and key vault.

Compute services: This section examines compute offerings and security considerations
within Azure. Some topics include security considerations, VM access management,
application identity, disk encryption, policies for virtual machine, image management,
monitoring, and Azure virtual machine security.

Databases: This section discusses the various database services that Azure offers including
fully managed relational, NoSQL, and in-memory databases. These span proprietary and open
source engines to fit the needs of modern app developers.

Labs
•	 Initial login: Students set up their lab environment in this lab
•	 Identity and access management: This exercise explores how the services running within

the virtual machine can execute actions on Azure’s management plane. Students also
identify the role and permissions assigned to the virtual machine and understand its security
implications

•	 Networking: In this exercise, students examine a network security misconfiguration and fix it
•	 Storage: This lab allows students to explore how Azure storage can be accessed using

methods such as storage account keys and shared access signature, and learn the security
implications of each method

Intended Audience
•	 Cloud Administrator
•	 DevOps
•	 Full-stack Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand cloud computing

with emphasis on security
considerations

•	 Understand the various service
offerings

•	 Comprehend Azure security
features

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 17Instructor-Led Training Catalog | March 2024

Securing AWS

Cloud computing has grabbed the world’s attention not only for its pervasive, on-demand,
convenient usage, but for its ability to be vulnerable to data breaches and novel forms of
attack. Since most software uses the cloud in various shared capacities (development,
hosting, or integration with third-party code), threats from hackers are inevitable. This hands-on
workshop equips students to understand this new landscape of converged infrastructure and
shared services, its existing and emerging threats, and provides them with secure mitigation
methods.

The Securing AWS course is an introductory course, covering Amazon core services, such as
IAM, EC2, S3, RDS, KMS, Serverless Lambda, and VPCs, with a focus on security. This course
enables students to identify areas for cross-pollination between development and operations
that enhance application, infrastructure, and network security.

Introduction: This section discusses cloud risks and prepares the students for the lab
environment.

Identity and access management: This section covers a quick start and common security
considerations for identity and access management (IAM), including root account security and
general IAM best practices.

Virtual private cloud: This section discusses multiple levels of security that you can use to
protect your network.

Elastic compute cloud: This section covers a quick start and common security considerations
for elastic compute cloud (EC2).

Key management service: This section covers a quick start and common security
considerations for key management service (KMS).

Relational database service: This section covers a quick start and common security
considerations for relational database service (RDS).

Simple storage service security: This section covers a quick start and common security
considerations for simple storage service security (S3).

Serverless (Lambda): This quick start section discusses common security considerations for
Lambda.

Labs
•	 Initial login: Students set up their lab environment in this lab
•	 Exploring IAM roles: Students explore the functionality of IAM roles, and peer under the hood

to understand some of their security implications
•	 Encrypting data with KMS: Students use a customer-managed customer master key to

encrypt and decrypt sensitive data hosted on the workstation server
•	 RDS network hardening: Students identify and correct a security RDS misconfiguration
•	 Securing S3 buckets: Students access S3 objects, configure permission

Live demos
See common security issues found in the AWS environment, such as IAM misconfiguration,
exploiting an EC2 metadata weakness, and elevating permissions via a Lambda exploit.

Intended Audience
•	 Cloud Administrator
•	 DevOps
•	 Full-stack Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Secure a cloud application

using common cloud-native
technology including: AWS IAM,
KMS, EC2, VPC, and S3

•	 Use common tooling in a
hands-on fashion to secure an
example cloud application

•	 Examine the threat model for
a typical cloud application,
differentiating security
considerations for cloud-native
vs. on-premises applications

Cloud Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 18Instructor-Led Training Catalog | March 2024

Securing Containers With
Docker
Containers have changed the way applications are being deployed. “Containerization” has
gained traction over the years because it easily enables an application team to build, package,
and distribute a microservice or an application across different environments. Docker has
emerged as the leading container technology for packaging and deploying these services or
applications.

However, as always, security is a challenge that organizations face when it comes to deploying
containers securely. Container security refers to protecting the integrity of the containers—the
application as well as the infrastructure it uses. The Securing Containers With Docker course
features hands-on labs, best practices, and instructions that will enable students to harden the
container runtime and the container host. The sections of this course are the following:
•	 Introduction: Overview, function, and value
•	 A closer look at Docker: Setting up your own Docker images
•	 Security controls provided by Docker: Safeguards to containers
•	 Attacks against your containers: Common and uncommon attacks
•	 Open source tools: Streamlining the security of your Docker containers
•	 Understanding the risks: Technical risks and procedural challenges

Labs
The three labs in this course cover the following:
•	 Docker basic commands
•	 Run a remote image
•	 Working with images
•	 Run a local image
•	 Security controls
•	 User namespaces
•	 No new privileges
•	 Control groups
•	 Capabilities
•	 Apparmor
•	 Seccomp
•	 Hacklab
•	 Sharing is caring?
•	 Fixing the vulnerability
•	 The great escape
•	 Fixing the hole
•	 Volumes of vulnerabilities
•	 Hard mode

Intended Audience
•	 Cloud Administrator
•	 DevOps
•	 Full-stack Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand how containers

work and differ from
virtualization

•	 Understand the key risks when
using containers

•	 List the available security
controls

•	 Learn how to protect against
container attacks

•	 Understand Docker security
best practices

•	 Learn about some common
container security tools

Cloud Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 19Instructor-Led Training Catalog | March 2024

New in 2024

Securing Kubernetes

Kubernetes has emerged as the leading orchestration technology used by organizations large
and small for packaging and deploying microservices in applications. The Securing Kubernetes
course teaches how to protect the integrity of containers running in a Kubernetes cluster. This
includes both the application and the infrastructure. This course explains what Kubernetes is
about, how an organization can reap the benefits of secure container deployment, and best
practices.
•	 A brief intro into containers: Covers some container basics
•	 Container risks and threats: Informs about key risks such as insecure container images
•	 Orchestration: Explains how the life cycle of containers is managed
•	 Kubernetes attack surface: Discusses the attack surface, framework, and scenarios
•	 Securing Kubernetes: Details security capability models, namespaces, service accounts,

authentication, and authorization
•	 Networking: Explains networking security, policies, and authentication
•	 Secrets management: Includes third-party secrets management
•	 Admissions: Discusses admission controllers, pod security admission, and gatekeeper
•	 Resource consumption and availability: Talks about resource quotes and highly available

Kubernetes
•	 Deployment time security: Includes topics like container sandboxing, control groups, and

dangerous capabilities
•	 Runtime security: Discusses auditing workloads
•	 Logging and monitoring: Discusses adding a cluster and auditing policy
•	 Supply chain security: Includes discussion on image signing, scanning, and verification
•	 Real-world case studies

Labs
•	 Analyze misconfigured and malicious container images
•	 Benchmark Kubernetes cluster and hardening
•	 Identify and fix Kubernetes misconfigured RBAC policies
•	 Understand SSRF in the Kubernetes world and its fix using network policies
•	 Explore DoS proofing the memory/CPU resources
•	 Understand container escape to host system

Intended Audience
•	 Architects
•	 DevOps
•	 Full-Stack Developers
•	Technical Managers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	16 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand key risks when

using Kubernetes​
•	 List the available security

controls​
•	 Describe protections against

attacks on Kubernetes​
•	 Identify common Kubernetes

security tools

Cloud Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Defensive
Strategies

 | synopsys.com | 21Instructor-Led Training Catalog | March 2024

Mobile Securing Code Using Static
Analysis
The Securing Code Using Static Analysis course focuses on the static analysis process
and tools that can be used to test and attack a web application. It explains static
analysis techniques, compares manual and automated code reviews, and discusses the
implementation of static analysis in your software development life cycle (SDLC). This course
also provides demonstrations and practical hands-on exercises in which students learn how
to identify common vulnerabilities using code review and how to use common static analysis
tools.

Introduction to static analysis: This section introduces static analysis, the need for it, its
history, and types of static analysis.

Advantages and limitations of static analysis: Discusses static analysis pros and cons, false
positives and false negatives, languages, frameworks, and third-party code.

Where does static analysis fit in?: Defines vulnerabilities and discusses where static
application security testing (SAST) fits in.

Important static analysis concepts: Explains input validation and output encoding, proper use
of APIs, technologies, and methods.

Static analysis types: This section details the pros and cons of each type of static analysis.

Static analysis common steps: Covers topics including code review cycle, establishing goals,
understanding context, and source code and configuration.

Manual static analysis: Explains how to conduct manual static analysis, along with its
advantages and pitfalls.

Tools and tool types: This section discusses tool types and available tools.

Deployment types: Covers topics such as centralized static analysis effort and considerations,
developer desktops and considerations, build servers and considerations, and CI/CD pipeline
and considerations.

Running tools: This section discusses tool flow, and simple and in-depth static analysis tools.

Triage: Explains how to triage findings, tackle a large number of findings, and understand impacts
to triage.

Reporting: Discusses how to Report results and defects.

Fix the code: This section explains how to use findings and fix code.

Labs
The following labs are included in the course:
•	 Manual code review
•	 Desktop static analysis
•	 Configure and scan JavaSec using Coverity
•	 Results triage

Intended Audience
•	 DevOps
•	 QA Engineers
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Recognize the importance of

static analysis
•	 Understand where static

analysis fits in your SDLC
•	 Apply static analysis tools in

your SDLC

Defensive Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 22Instructor-Led Training Catalog | March 2024

Securing Open Source

Open source software (OSS) is defined as a type of computer software in which source code
is released under a license in which the copyright holder grants users the rights to use, study,
change, and distribute the software to anyone and for any purpose. As the role of developers
has grown more vital, so has the prominence of open source code. Today, open source
libraries are the foundation for every application in every industry. It is so prevalent that many
code owners are not aware of all the open source components in their software.

The Synopsys Securing Open Source instructor-led training course enables students to
establish trust and limit risks to the business through education and awareness surrounding
OSS obligations and implications. This course provides Application Development, Operations,
Legal, Security, and DevOps teams the understanding needed to secure open source within
their organization from a program and compliance-based lens. Content includes developer
aides to manage OSS in your environment as well as hands-on labs and case studies covering
real world open source challenges and tooling for automation and scaling to your business.

Course topics include:
•	 Introduction: Covers the definitions, historical events, individuals, and organizations that

formed the open source community and foundations which we rely upon today
•	 License Fundamentals: Helps students understand and interpret the fundamentals of open

source pertaining to licensing and development
•	 Open Source Maturity: Analyzes the components of an OSS program structure and

discusses program implementation excellence within a Synopsys OSS framework
•	 Open Source Communities: Focuses on acceptable activities and clear policies to drive

safe behaviors within the open source community while protecting intellectual property for
patents and secrets

•	 Third-Party Open Source: Describes the open source supply chain and vendor compliance
with commercial arrangements containing OSS

•	 Metrics: Enables students to understand and interpret data required for effective OSS
metrics, and allows them to apply or articulate the OSS program value using metrics

•	 Developer Practices: Students learn about methods developers use to integrate open
source components, as well as how they analyze and connect these methods in practice

•	 DevOps Tooling Capabilities: Developer patterns, how to control the source of open source,
and how to intelligently orchestrate compliance are some of the topics discussed here

•	 Open Source Operations: Explains how OSS impacts and identifies unique risks and threat
patterns

Labs
Black Duck scan tooling:​
•	 Installation and configuration​
•	 Localized scanning results​

Intended Audience
•	 Administrators
•	 Architects
•	 DevOps
•	 Full-stack Developers
•	 Managers
•	 QA Engineers
•	 Security Practitioners

Delivery Format
•	 Virtual Classroom

Class Duration
•	4 hours or Custom

Course Objectives
At the end of this course, you will
be able to:
•	 Refresh your knowledge

of OSS communities and
utilization

•	 Understand the legal, security,
and operational impacts of
OSS

•	 Build a process for OSS
approval and organizational
compliance

Defensive Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 23Instructor-Led Training Catalog | March 2024

Mobile Securing Software with
DevSecOps
Securing Software With DevSecOps is an introductory course aimed at understanding
DevSecOps key concepts, roles, benefits, challenges, and deployment. Differences between
Agile, continuous integration/continuous delivery (CI/CD), and DevSecOps are explored in this
course. DevSecOps sample pipeline demos and case studies enrich the course to make it a
complete learning experience for students.

This course is available with a lab selection of Open Source and/or Synopsys security testing
tools on an insecure Java or Golang application.

DevOps: This section refreshes students’ DevOps knowledge and lays the foundation for
the DevSecOps section. Along with a short history of DevOps, this section describes the
mindset and various entities that need to collaborate to achieve the common goal of company
excellence and competitive advantage. It also elaborates on CI and CD, and how they compare
against Agile and DevOps.

DevSecOps: This deep-dive section first defines DevSecOps and explains its benefits, key
concepts, and culture. Then it details DevSecOps challenges in three categories (people,
process, and technology) as a precursor to the next problem-solving section.

Achieving DevSecOps: This section explores a three-pronged approach to achieving the best
business results using DevSecOps.

Case studies and DevSecOps challenges: This section integrates all the stages of building
a complete DevSecOps pipeline. The case studies are presented in reference to the three-
pronged approach described above, illustrating how DevSecOps and automation helped clients
achieve DevSecOps transformation.

The challenges (people, process, technology) are discussed here as well, along with possible
solutions that were applied.

Culture of automation and CI/CD: This section focuses on how CI/CD and automation are
integral to DevSecOps, enabling processes and people to be brought together via technology.
This section also focuses on pipeline implementation in the context of several DevSecOps
goals that organizations want to achieve.

Labs
The Java pipeline or Go pipeline lab exercises showcase basic automation use cases and tool
integration. This course covers a sample language, either Java or Go, and a set of tools for the
pipeline. These activities use cloud-based virtual machines. Lab activities include:
•	 Building the source code to generate a WAR (for Java pipeline) or Golang (for Go pipeline)

artifact
•	 Integrating a SAST scan (both pipelines)
•	 Integrating an SCA scan (both pipelines)
•	 Building an application image and integrating its scan (Java pipeline only)
•	 Integrating a DAST scan (both pipelines)
•	 Pausing the CI pipeline for manual approval (both pipelines)
•	 Asynchronous continuous security pipeline (Java pipeline only)

Intended Audience
•	 Architects Administrators
•	 Architects
•	 DevOps
•	 Full-stack Developers
•	 Managers
•	 QA Engineers
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 or 16 hours

Course Objectives
At the end of this course, you will
be able to:

•	 Recognize the difference
between DevOps and
DevSecOps

•	 Differentiate between Agile, CI/
CD, and DevSecOps

•	 Understand the process to
achieve DevSecOps by bringing
together people, process, and
technology

•	 Understand the process of
vulnerability management
using the tools in the lab

Defensive Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
file:///Users/rbay/Downloads/bookmark://_Toc40118428
file:///Users/rbay/Downloads/bookmark://_Toc40118431
file:///Users/rbay/Downloads/bookmark://_Toc40118434
file:///Users/rbay/Downloads/bookmark://_Toc40118437

Languages and
Platforms

 | synopsys.com | 25Instructor-Led Training Catalog | March 2024

Mobile Defending C

The Defending C course provides developers with a solid foundation in software security as
it relates to the implementation of applications developed in C. This course includes detailed
examples and focuses on the correct way to think through security problems by providing
structured theory, demonstrations, technical deep-dives, and illustrated explanations. This
course emphasizes the habit of building security in with proven programming practices and
explains common security-related problems in detail so that students can avoid them in their
own work.

Course sections
•	 Risk landscape
•	 Memory bugs
•	 Integers
•	 Strings and streams I/O
•	 Heap corruption and integrity
•	 Execution targets
•	 Secure toolchain

Labs
•	 Getting to know your environment: Introduces the lab layout and the toolset provided on the

virtual machines including editors, compiling, debugging, and scripting
•	 Risk landscape: Asks students to predict the outcome of a build, and run a simple program

that gets sizing wrong
•	 Trusting input: Asks students to find, exploit, and fix a vulnerability on the server side of a

vulnerable client-server program
•	 Stack-based buffer overflow and memory integrity: Introduces a sample application that is

vulnerable to a buffer overflow
•	 Integer attacks: Asks students to find integer vulnerabilities in four vulnerable programs and

then fix the defects
•	 Strings attack and defense: Asks students to find and fix the vulnerabilities discussed in the

course
•	 Writing a safe wrapper for calloc(): Asks students to write a safe wrapper for call() that

contains the best practice in this course
•	 Bypassing ASLR: Instructs students why they should not rely on ASLR by stepping

sequentially though an ASLR bypass
•	 Fuzzing a vulnerable parser using AFL: Students fuzz a vulnerable parser to find integer

vulnerabilities

Note: Although this course is taught best as a 16-hour course, a shortened 8-hour version is
available on request.

Intended Audience
•	 Architects
•	 Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	16 hours
•	 8 Hours on Request

Course Objectives
At the end of this course, you will
be able to:
•	 Identify security risks common

to C applications
•	 Identify the impact to an

application when a vulnerability
is exploited

•	 Understand how to apply
best practice C programming
techniques

•	 Understand how best practices
prevent common vulnerabilities

•	 Identify how C applications
build configuration

•	 Identify how the production
runtime environment can be
used to further reduce risk

Languages and
Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 26Instructor-Led Training Catalog | March 2024

Mobile Defending C++

The Defending C++ course provides developers with a solid foundation in software security as
it relates to the implementation of applications developed in C++. This course includes detailed
examples and focuses on the correct way to think through security problems by providing
structured theory, demonstrations, technical deep-dives, and illustrated explanations. This
course emphasizes the habit of building security in with proven programming practices and
explains common security-related problems in detail so that students can avoid them in their
own work.

Course sections
•	 Risk landscape
•	 Memory bugs
•	 Sequences, algorithms, and containers
•	 Integers
•	 Heap corruption and integrity
•	 Execution targets
•	 Secure toolchain
•	 Modern C++: C++11, C++14, C++17 core language features

Labs
•	 Getting to know your environment: Introduces the lab layout and the toolset provided on the

virtual machines including editors, compiling, debugging, and scripting
•	 Risk landscape: Asks students to predict the outcome of a build, and run a simple program

that gets sizing wrong
•	 Trusting input: Asks students to find, exploit, and fix a vulnerability on the server side of a

vulnerable client-server program
•	 Stack-based buffer overflow and memory integrity: Introduces a sample application that is

vulnerable to a buffer overflow
•	 Preventing overflows using an input iterator adapter: Tasks students with writing an iterator

adapter that can be used with the standard algorithms (e.g., std::copy) to prevent buffer
overflows

•	 Integer attacks: Asks students to find integer vulnerabilities in four vulnerable programs and
then fix the defects

•	 Exploring new: Examines wrapping due to array new and explores different behaviors under
different compilers

•	 Bypassing ASLR: Teaches students why they should not rely on ASLR by stepping
sequentially though an ASLR bypass

•	 Fuzzing a vulnerable parser using AFL: Students fuzz a vulnerable parser to find integer
vulnerabilities

Note: Although this course is taught best as a 16-hour course, a shortened 8-hour version is
available on request.

Intended Audience
•	 Architects
•	 Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	16 hours
•	 8 Hours on Request

Course Objectives
At the end of this course, you will
be able to:
•	 Identify security risks common

to C++ applications
•	 Identify the impact to an

application when a vulnerability
is exploited

•	 Understand how to apply best
practice C++ programming
techniques

•	 Understand how best practices
prevent common vulnerabilities

•	 Identify how C++ applications
build configuration

•	 Identify how the production
runtime environment can be
used to further reduce risk

Languages and
Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 27Instructor-Led Training Catalog | March 2024

Mobile Defending Golang

The Defending Golang course helps you to identify security risks common to Golang
applications and their impact when the vulnerability is exploited. Equipped with a variety of labs
and a demo, this course provides you with best practices for secure Golang programming.

Course topics include:
•	 Risk Landscape: Compares Go to other compiled languages such as C/C++ and Java in this

section and provides a mind map of defensive programming problem areas
•	 Injection Vulnerabilities: Focuses on the Cross-Site Scripting (XSS) injection attack, its

types, its contexts, and mitigation
•	 Files: Discusses how attackers can use name confusion and path traversal, and explains

how to protect against those attacks
•	 Other Injection Vulnerabilities: Provides a brief overview of some injection vulnerabilities

such as XML/ XPath injection, HTTP header injection, LDAP injection, and buffer overflows
(C/C++), and explores SQL injection (SQLi), log injection, and command injection, and their
mitigation in detail

•	 Working with XML: Discusses how allowing untrusted input into XML can cause injection
attacks, and how XML eXternal Entities (XXE) can be problematic

•	 Concurrency: Describes in-process concurrency such as race conditions and deadlocks, and
interprocess concurrency such as name squatting and time-of-check, time-of-use (TOCTOU);
the Go race detector is also introduced

•	 Integers: Provides an overview of handling of integers in Go such as integer types and
ranges, also discusses wrapping and conversion errors, conversion rules, and mitigations in
Go

•	 Error Handling: Examines error handling in Go and problematic ignored errors using two
CVEs

•	 Secure Toolchain: Discusses Gosec, a security tool that performs static code analysis for
Golang projects

•	 Miscellaneous Topics: Includes best practices for unsafe packages, external attack surface
reduction, privilege reduction, and insecure configuration

Labs
Work with these labs to discover weaknesses discussed in the class in an intentionally
vulnerable system and apply appropriate mitigations.

Note: The instructor chooses the labs from this main list based on student preparedness and
time availability.
•	 Go Setup
•	 JS Injection (XSS)
•	 Directory Traversal
•	 Web App: Database Access
•	 Malicious Commands
•	 File Upload
•	 Dangerous OS Calls
•	 XML eXternal Entities
•	 Go to the races
•	 Gosec Tool
•	 Insecure Configuration: Database Access
•	 Insecure Configuration: Directory Listing

Intended Audience
•	 Architects
•	 Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Identify security risks common

to Golang applications
•	 Identify the impact to the

application when a vulnerability
is exploited

•	 Understand how to apply
best practices to Golang
programming

Languages and
Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 28Instructor-Led Training Catalog | March 2024

Mobile Defending Java Web
Applications
This course focuses on defensive programming techniques in Java Web Applications
against common web vulnerabilities. It discusses an approach to identify security risks
and vulnerabilities, apply defensive programming techniques, and securely configure web
applications.

This course also provides demonstrations and practical hands-on exercises where students
learn how to identify security vulnerabilities in the code and fix them using best practices
discussed in the course.

Recognizing Risks in Enterprise Java Web Applications: Discusses common web application
risks, typical Java Web Application risks, risks caused by the configuration of the application
server, and a quick overview of OWASP Top 10 critical security risks

Access Control: Discusses privilege escalation, forceful browsing attacks, broken
authentication, and parameter tampering

Secure Session Management: Explains secure session management techniques, secure
Session ID generation, and secure timeouts

Secure Configuration: Describes general risks, security configuration and error handling

Input Validation: Details the risks of improper validation and output encoding, and provides
examples of proper validation techniques for mitigation

HTML Output Encoding: Discusses encoding contexts within a browser, and output encoding
usage in HTML, a URL, JavaScript strings, Spring, Struts, and JSF

Handling XML: Optional section discusses common XML pitfalls with associated mitigation,
and shows code vulnerable to XML, XXE, or XPath injection

Using Databases: Explores SQL injection and includes examples of vulnerable code and details
of how to avoid insecure API usage

Java Deserialization: Includes a brief history, types of deserialization, and usage, methods,
and examples, with key mitigation techniques

Labs
•	 Semantic input validation

	– Processing URLs as string
	– Validating the URL strings via whitelisting

•	 Performing input validation
	– Web application penetrating testing utilizing Burpsuite
	– Changing values during interception to test input validation

•	 Using output encoding
	– Preventing cross-site-scripting (XSS) through output encoding
	– Utilizing OWASP Java encoder to encode strings

•	 Using parameterized queries
	– Protecting a web application from SQL injection attacks
	– Modifying SQL strings using the SessionFactory class to create secure queries

Intended Audience
•	 Architects
•	 Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the overall

approach to securing web
applications

•	 Identify security risks common
to Java web applications

•	 Identify security vulnerabilities
in Java web applications

•	 Apply defensive programming
techniques to write secure
Java web applications

Languages and
Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 29Instructor-Led Training Catalog | March 2024

Mobile Defending JavaScript and HTML5

The Defending JavaScript and HTML5 course addresses the questions of secure development
in front-end and back-end JavaScript. This course helps students understand generic web
application risks as well as specific risks related to JavaScript and HTML5 technologies. This
course also explains risks present in server-side code written in JavaScript, such as JSON
injection, insecure object comparison, prototype pollution, and mass assignment.

Web Application Risk Landscape: This section analyzes browser security features and
common web application risks. It also covers risks relevant to JavaScript applications, such as
manipulating the DOM, JavaScript execution contexts, and DOM clobbering.

Defensive Programming for Client-Side JavaScript and HTML5: This section covers best
practices that will help students write secure code when handling untrusted data in scripts. It
also covers using HTML5 features such as web storage, web messaging, and cross-domain
communication; iframe sandboxing; and the content security policy.

Defensive Programming for Server-Side JavaScript: This section discusses how to safely
handle JSON data, perform object comparison, and avoid the risks of prototype pollution and
mass assignment.

Labs
Students find, fix, and verify the remediation of a vulnerability in the demo applications during
labs.
•	 Storing data securely: Find a storage-related information disclosure vulnerability and fix
•	 Cross-domain communication: Modify the original code to make it withstand cross-domain

attacks
•	 iFrames in a sandbox (XSS): Correct usage of the iframe sandbox attribute
•	 Using content security policy: Correct usage of content security policy headers
•	 Using cross-origin resource sharing securely: Use cross-origin resource sharing on an

HTML5 demo ecommerce site to securely share user content with another website

Intended Audience
•	 Architects
•	 Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Recognize common risks

related to client- and server-
side JavaScript

•	 Identify and fix security
vulnerabilities in your
JavaScript code and web
application configuration

Languages and
Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 30Instructor-Led Training Catalog | March 2024

Mobile Defending C#.NET Web
Applications
The Defending .C#.NET Web Applications course focuses on modern C#.NET secure
development with an emphasis on microservices, service-oriented architecture, and cloud-first
applications.

In addition, this course teaches modern attacker techniques and how to defensively write
code to prevent these vulnerabilities in your applications. This course discusses activities
that you can perform during the software development life cycle (SDLC) to detect and prevent
vulnerabilities.

Overview of web application vulnerabilities: Introduces the critical web application
vulnerabilities in .NET.

Secure design patterns: Covers design patterns for security: principle of least privilege,
defense-indepth, and more.

Test-driven development for security: Explores how to write unit tests to assert for security.

Improving code quality for security by leveraging OSS: Demonstrates how to leverage open
source tools to improve the security posture of the SDLC.

Security in .NET: This section includes a detailed discussion of web application vulnerabilities
and how to defend against them. Topics include:
•	 Input validation: Examine its use as the first line of defense against injection attacks and

other attacks
•	 Handling output: Learn why output encoding is used in addition to input validation or when

input validation is not possible
•	 Using SQL safely: Investigate SQL injection and the approaches to creating SQL statements
•	 Authentication: Learn the flaws in the “security through obscurity” concept and .NET

authentication systems as well as the authentication methods, their benefits, and drawbacks
•	 Securing JWT and sessions: See what an attacker can do with a session token, including

session fixation, prediction, and brute-forcing, and what you can do about it, as well as how
JWTs are handled securely

•	 Access control: See the importance of avoiding excessive client-side trust and why access
control is more than just authentication

•	 Defending against CSRF: Examine what is targeted by an attacker and the common
solutions

•	 Deserialization: Learn what the C#.NET deserialization risks are and are not, and the various
mitigation strategies

•	 Secure configuration: Learn the importance of recognizing and dealing with flaws in the
system configuration and environment

Labs
Lab exercises focus on the most important best practices discussed in the course:
•	 Performing input validation
•	 Using output encoding
•	 Using parameterized queries and stored procedures
•	 Protecting against CSRF
•	 Securing NET serialization

Intended Audience
•	 Architects
•	 Developers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand secure data

processing controls including
input validation and output
encoding

•	 Examine how to prevent
injection vulnerabilities

•	 Examine how to securely
manage cookies and JWTs

•	 Understand test-driven security
•	 Understand environment

hardening

Languages and
Platforms

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Attacking
Strategies

 | synopsys.com | 32Instructor-Led Training Catalog | March 2024

Mobile Attacking Networks

The Attacking Networks course is aimed at helping students understand the security posture
of a network and how best to uncover its vulnerabilities. The first part of this course introduces
students to network security testing and then discusses a structured approach for performing
tests using tools. The second part of the course is dedicated to software exploits, advanced
testing skills, and post-exploitation activities. The final part of the course explains how to
document and communicate findings from an assessment. Labs are performed throughout
the course to tie concepts to the real world.

Introduction to network security testing: This section explains what network security testing
is and how it differs from other testing types. Topics covered include:
•	 Network basics: Fundamentals of networking covering how networks work on the protocol

layer
•	 Network security devices: Traditional and more advanced devices and the layers at which

they operate
•	 Rules for network security testing: Guidelines for not causing disruptions during testing

Network security testing process: This section details a structured approach to network
security testing to ensure that all five steps are covered in the limited time frame available for
the test.

Exploitation and post-exploitation: Exploits are some of the most common network security
issues. Vulnerabilities in code allow attackers to compromise systems. This section gives an
overview of various software exploits and how they are used in the fourth step of the network
security testing process. Post-exploitation activities are a variety of techniques carried out after
initial compromise. Advanced techniques used to gain additional access inside the network as
well as to access sensitive information are also detailed in this section.

Communicating findings: The real value of a network security test comes when the findings
are communicated in a clear and effective way to responsible entities for proper mitigation and
correction measures to be taken. Being able to write a defect report that targets the right group
is therefore one of the most important skills for a network security tester. This section explains
the dos and don’ts of this valuable fifth step in the process.

Labs
Labs are chosen from this list to match audience needs:
•	 Wireshark: Observe an OSI model in action
•	 Nmap: Discover hosts and listening services
•	 Metasploit: Introduction to MSF and exploitation
•	 Netcat: Network swiss-army knife
•	 Password cracking: Going from hash to plaintext
•	 Communicating findings: Evaluate risks, document defects, and communicate to

management
•	 Additional compromises: Find other vulnerabilities

Intended Audience
•	 Architects
•	 DevOps
•	 QA Engineers
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand networking basics
•	 Follow a standard

methodology for performing
network security assessments

•	 Recognize common network
testing tools and exploitation

•	 Communicate findings to
network administrators and
management

Attacking
Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 33Instructor-Led Training Catalog | March 2024

Mobile Attacking Web Applications

The Attacking Web Applications course explains how to test for security issues in web
applications. It defines what web security testing is and how it differs from other forms of
testing, describes what the testing process looks like, and gives specific guidance on how to
test for some of the most important risks in web applications.

Introduction to web security testing: Covers the fundamentals of web security testing.

Web security testing process: Covers the methodology for web security testing including how
to develop a test strategy, test plan, test case specifications, execute, document and retest.

HTTP: Covers HTTP basics, including HTTP requests and responses, URL encoding, RESTful
web services, session management, cookies, same origin policy, document object model,
intercepting traffic, and local proxies.

Testing for OWASP Top 10: Details how to identify and test for some of the most important
OWASP Top 10 security risks in web applications.

Communicating findings: Covers how to rank risks and communicate security findings to
various stakeholders. Topics covered include test deliverables, audience analysis, defect
reports, evaluating risks, and disclosing vulnerabilities.

Labs
Labs for this course include:
•	 Intercept HTTP request/response
•	 Set up a local proxy
•	 Configure it to capture http traffic from the browser
•	 Intercept proxies
•	 SQL injection
•	 SQL injection from form input
•	 Challenge on enumerating secret question answers
•	 Cross-site scripting (XSS)
•	 Reflected XSS
•	 Stored XSS
•	 XSS and client-side tampering
•	 Communicating findings
•	 Evaluate risks
•	 Write a defect report
•	 Communicate the defect and its risk to management

Intended Audience
•	 Architects
•	 DevOps
•	 QA Engineers
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the basics of HTTP

and web security testing
•	 Use tools for intercepting

and modifying HTTP
communication

•	 Understand how to exploit
common web vulnerabilities

•	 Present the result of a web
security test for different target
groups

Attacking
Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 34Instructor-Led Training Catalog | March 2024

Intended Audience
•	 Developers
•	 Security Champions
•	 Security Professionals
•	 Engineering
•	 Other technical roles

Delivery Format
•	 Virtual Classroom
•	Traditional Classroom

Class Duration
•	 Custom

Course Objective
At the end of this course, you will
be able to:
•	 Discover vulnerabilities in an

application

Mobile Hackathon

This is a Capture The Flag (CTF) style course that provides an intentionally vulnerable
environment for participants to test their exploit capabilities. Event content such as tech
stacks, programming languages, exploitation categories, and duration can be tailored to the
customer's needs. Synopsys offers three distinct flavors of this course:
•	 Pure Hacking: In this version, participants attack the provided application and environment

while adhering to the rules of engagement. Their score for the course is determined by the
number and difficulty of the vulnerabilities they successfully discover and exploit. (Level:
Beginner – Expert)

•	 I teach, you break: In this version, hints are provided in the form of short lessons throughout
the course. The lessons conclude by identifying areas within the application including tools,
example exploits, or live walkthroughs. Participants will then practice their newly learned
knowledge. (Level: Beginner – Expert)

•	 Find and Fix: In this version, participants identify the vulnerabilities and fix them. Points
are awarded only for fixes. This version should include Pure Hacking, and the participants
should have DevOps knowledge. (Level: Intermediate – Expert)

In addition to these three flavors, there are different support modalities that you can choose to
utilize:
•	 Hacking Sprint: Similar to an instructor-led-training class, the environment and instructors

are available for an eight (8) hour duration. The instructors provide both discovery and
exploit advice as well as grade remediation. Depending on the number of participants and
the flavor chosen, multiple instructors may be required.

•	 Hacking Marathon: The environment is left open for an extended period such as a full week
or even a full month. This duration works well for security weeks or security months where
participants can attack the environment at their leisure throughout the duration. Instructors
set up office hours when they are available to provide advice to the students, run an “I teach,
you break” session, as well as grade remediation efforts. The number of office hours needed
is determined by the number of participants as well as the duration of the event.

Attacking
Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 35Instructor-Led Training Catalog | March 2024

Mobile Red Teaming

Red teaming is a goal-based assessment approach that allows organizations to gain insight
into how their security posture is when faced with a real threat. This hands-on Red Teaming
course introduces students to the concepts of red teaming and how it’s different from traditional
vulnerability testing. The course also includes guidance for the organization on creating and
maintaining its own internal red teams. Students in this course are introduced to physical, social,
and electronic testing methods that can be utilized during red team engagements.

What is red teaming?: Students learn how to emulate adversaries to provide depth during an
assessment.

Thinking maliciously: Students think like an attacker, ask questions about trust, and analyze
potential assumptions and possible attacks with the ultimate objective of knowing the enemy.

What is social engineering?: This section provides a behind-the-scenes look on social
engineering.

What does a red team look like?: This section discusses key roles, requirements of a leader
and participants, their skill sets, and organizational placement.

Physical bypass techniques: This section discusses shims, bump keys, and under the door
tools.

RFID cloning: Discusses RFID (radio frequency identification) badges, their frequencies, and
tools for cloning.

Scoping a red team assessment: Explains factors to consider when scoping the assessment,
its length, staffing, and limitations.

Putting together a red team playbook: This section examines the red team playbook.

Phases of a red team assessment: Covers the five phases of a red team assessment, from
reconnaissance to report writing, along with their pitfalls.

Getting organizational buy-in: Students craft a mission statement, write goals, and learn how
to sell their red teaming effort.

Report writing: Covers what students should include in their report, how to present attack
scenarios and threat findings, and how to provide good remediation advice.

Labs
Tools that aid students during the reconnaissance and exploitation phase of an assessment
are used the exercises below:
•	 GooFile: An open source tool which discovers files with a given extension on a target domain
•	 theHarvester: A specialized tool for discovering corporate email addresses
•	 Maltego: An extremely powerful open source intelligence discovery tool
•	 Social engineering toolkit (SET): A framework used to automate several facets of an email-

based phishing attack
•	 Nmap: The de facto standard for port scanners
•	 Metasploit: An open source exploitation framework
•	 Metasploitable: A known vulnerable host with many possible avenues for compromise

Intended Audience
•	 Architects
•	 Developers
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	Traditional 8 or 16 hours;

Virtual 8 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the red teaming

concept
•	 Understand how red teaming

differs from traditional testing
•	 Understand the components of

a red team assessment
•	 Explain red team assessments

internally to management
•	 Understand the process

of conducting red team
assessments

Attacking
Strategies

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Requirements,
Architecture, and Training

 | synopsys.com | 37Instructor-Led Training Catalog | March 2024

Champions Workshop

Introduction
The Champions Workshop provides Security Champions with the knowledge and skills they
need to enhance the security practices of their teams and ensure security best practices are a
part of the entire development process.

Benefits of a Champions Workshop
In today’s fast paced software development world, security can struggle to keep pace with
development. Security often becomes an afterthought, takes a back seat to functionality, or
gets tacked on at the end. This tends to produce software with high vulnerability counts or
insecure designs. To combat these issues, many companies are creating Security Champions
Workshops in order to scale their security capabilities, shift security left int the process, and
ensure security moves at the speed of development.

Champions Workshops seek to bridge the gap between security and development teams
by providing enhanced security training to a subset of Developers, Engineers, Testers,
and Operations Personnel. These Security Champions advance security culture, serve
as a focal point for security issues on their teams, and act as a communication channel
between development teams and security. This allows for a developer-focused approach to
implementing secure development lifecycle processes and techniques.

How Does the Workshop Work?
The Workshop takes a modular approach to champions training, allowing each customer
to assemble a course that best fits the needs of their Security Champions. Topics include
Security Basics, Securing Apps and Platforms, Secure Development Practices, and Defensive
Programming. Our Champions Workshop Manager will work with you to develop an
educational path that best fits the needs of your company and your Security Champions.

Example Paths
DevSecOps Path
•	 Intro to Software Security
•	 Champions Roles and Responsibilities
•	 DevSecOps
•	 Securing Open-Source Software
•	 Threat Modeling
•	 Peer Code Review
•	 Triage and Prioritization
•	 Cloud Essentials
•	 Container Essentials

WebDev Path
•	 Intro to Software Security
•	 Champions Roles and Responsibilities
•	 Agile Security
•	 OSS Basics
•	 OWASP Top 10
•	 Attacking Web Apps
•	 Defending (JS/Java/C#) Web Apps

Intended Audience
•	 Security Champions

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 32 hours with an option for an

additional 8 hours of custom
content

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the basics of

Software Security
•	 Understand the roles and

responsibilities of a Security
Champion

•	 Mentor your team members
on Software Security best
practices

Requirements,
Architecture, and
Training

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 38Instructor-Led Training Catalog | March 2024

Mobile Threat Modeling

Introduction
Discovering weaknesses in the design of a system is the specific goal of threat modeling.
Synopsys’ threat modeling approach can reveal security issues not fully addressed by the
traditional methods of penetration testing and secure code review. Organizations benefit from
this software design analysis because you can perform it without code to discover potential
vulnerabilities early in the development cycle.

The lab portion of this course is available in multiple flavors:
•	 Microservices
•	 Embedded
•	 Customizable

Threat Modeling Introduction: This section defines a threat model and its benefits and
discusses well-known threat model methodologies and approaches.

Synopsys Case Studies: Synopsys establishes a hypothetical case study which is used as
a foundation for highlighting the various steps/processes of the Synopsys Approach. Using
a hypothetical threat model example, this section provides a deep-dive into the execution of
threat models. The following are examples of case studies provided by Synopsys:
•	 Classic Car Conversions
•	 Embedded System
•	 Mobile Application
•	 API Architecture
•	 Services Infrastructure

Synopsys Threat Model Process: Synopsys brings years of knowledge and experience to
its threat modeling approach. Synopsys has established its own way of building diagrams,
representing assets and controls, and techniques to introduce consistency in the identification
of threats. This portion of the discussion breaks down the Synopsys Approach to threat
modeling.

Attack Tree and Threat Traceability Matrix: Synopsys enumerates all possible attack
scenarios against a given technology and documents the controls and mitigating factors
against a successful compromise. These attack scenarios are documented in the form of an
attack tree or traceability matrix.

Labs
This lab reinforces what was learned in the previous sections:
•	 Students work in independent groups to build an entire threat model for a fictitious system

with a component diagram
•	 Even with a defined process, people come up with different threat models; these are

discussed

Note: Although this course is taught best as a 16-hour course, a shortened 8-hour version is
available on request.

Intended Audience
•	 Architects
•	 Developers
•	 DevOps
•	 Managers
•	 QA Engineers
•	 Security Practitioners

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	16 hours

Course Objectives
At the end of this course, you will
be able to:
•	 Describe different techniques

used for threat modeling
•	 Explain the Synopsys threat

modeling process and
methodology

•	 Use the Synopsys threat
modeling approach for
analyzing applications and
systems

Requirements,
Architecture, and
Training

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Embedded
and IoT

 | synopsys.com | 40Instructor-Led Training Catalog | March 2024

Mobile Embedded Systems Security

The Embedded Systems Security course provides an introduction to security engineering for
professionals who develop embedded, Internet of Things (IoT), or other integrated systems.
Course content is geared toward those students who have a firm understanding of the
principles of designing, engineering, or developing non-IT systems and seek to understand the
influence of security as a stakeholder in design.

Students are provided with a base understanding of cyber security as it relates to various
systems and the processes that should be present within their engineering life cycles. The
course takes the approach of understanding risks and vulnerabilities typically present in
these systems, and outlining processes and techniques to assist in developing software and
embedded systems to minimize cyber security risk.

Nomenclature and concepts: Outlines the nomenclature and standardized vocabulary used
throughout the course.

Common vulnerabilities: Describes commonly seen vulnerabilities and risks observed in both
software and embedded systems.

Understanding the system of interest: Assists students with the identification of the system
function and composition of embedded or integrated systems with respect to their influence
on security analysis.

Embedded systems attack taxonomy: Outlines the common taxonomy of exploring and
testing an embedded system.

Common embedded attack patterns: Examines several attack taxonomy elements.

Tenets of embedded systems security: Presents an overview of security tenets for embedded
systems.

Security in the systems development life cycle: Covers the security-related engineering
processes and software development life cycle touchpoints to integrate security as a
stakeholder in design.

Threat modeling for embedded systems: Examines the avenues that may be exploited or that
pose risk to a proposed system.

Risk assessment for embedded systems: Introduces the processes and techniques for risk
assessment related to cyber security issues.

Nontechnical mitigating controls: Discusses nontechnical mitigating controls for addressing
security risks in embedded systems.

Standards references: Explains various standards references.

Labs
In a lab environment using instructor-provided tools, students are provided with hands-on
exercises demonstrating some of the attack methods described in the course.

Note: Optional hands-on labs are available for classes with sufficient technical experience
to complete lab-based exercises. A background in implementation, coding, or technical
engineering is recommended for this material.

Intended Audience
•	 Architects
•	 Embedded Developers
•	 Managers
•	Testers

Delivery Format
•	Traditional Classroom
•	 Virtual Classroom

Class Duration
•	 Custom Scoped

Course Objectives
At the end of this course, you will
be able to:
•	 Understand the fundamentals

of integrating security into a
given system design

•	 Understand the methods
attackers may use to
compromise a system

•	 Understand the process of
decomposing a system to elicit
security goals and objectives

•	 Understand decision-
making related to security
requirements, remediations,
and threats

•	 Understand where to seek
information on specific
security guidance and
technology

Embedded and IoT

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

	Introduction
	Our Curriculum
	Delivery Models

	Emerging Technologies
	Principles of AI/ML Security

	Fundamentals
	Principles of Software Security
	Attack and Defense
	OWASP Top 10

	Mobile
	Defending Android
	Defending iOS

	Cloud Platforms
	Securing Azure
	Securing AWS
	Securing Containers With Docker
	Securing Kubernetes

	Defensive Strategies
	Securing Code Using Static Analysis
	Securing Open Source
	Securing Software with DevSecOps

	Languages and Platforms
	Defending C
	Defending C++
	Defending Golang
	Defending Java Web Applications
	Defending JavaScript and HTML5
	Defending C#.NET Web Applications

	Attacking Strategies
	Attacking Networks
	Attacking Web Applications
	Hackathon
	Red Teaming

	Requirements, Architecture, and Training
	Champions Workshop
	Threat Modeling

	Embedded and IoT
	Embedded Systems Security

