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Overview
In the past few years, cyber security has become intertwined into each step of the automotive development process. In 
particular, fuzz testing has proven to be a powerful approach to detect unknown vulnerabilities in automotive systems. However, 
with limited instrumentation, especially on software-heavy systems such as high-performance computers (HPCs), several types 
of issues go undetected, such as memory leaks and cases where the application crashes but restarts quickly.

These automotive systems are based on operating systems such as Linux and Android, so it’s possible to collect information 
from the system under test (SUT) to determine whether any exceptions were detected during fuzz testing. These details about 
the detected exceptions help developers better understand and identify the root cause of the issues and fix the problems more 
efficiently.

In this paper, we introduce the Agent Instrumentation Framework and explain how it can be used to improve the fuzz testing of 
HPCs. We show how information can be collected from the target system to identify exceptions on the SUT to help developers 
detect the underlying cause of any issues found. We also built a test bench based on this approach and performed fuzz testing 
against multiple SUTs. Based on our findings, we highlight several examples of issues that would not have been detected without 
the Agent Instrumentation Framework.

Introduction
There are four major trends driving innovation in the automotive industry: connected, autonomous, shared/services, and electric 
(CASE). These trends lead to improved safety, comfort, and better user experience, but they also lead to more potentially 
vulnerable software being used in vehicles, more attack surfaces, and more valuable targets within the vehicles. As such, there 
is an increasing need for cyber security. The automotive industry has responded with cyber security standards and regulation. 
For example, ISO/SAE 21434:2021 Road vehicles—Cybersecurity engineering was published August 2021, Automotive SPICE for 
Cybersecurity was released February 2021, and UN Regulation No. 155 – Cyber security and cyber security management system 
went into effect January 2021. 

In the typical automotive development process, commonly known as the V-model, cyber security is an integral part of every step. 
Security activities include defining and reviewing security requirements; conducting security reviews of the design; applying best 
practices and secure coding standards during software development; using automated tools such as static code analysis tools; 
and performing testing activities such as functional testing, vulnerability scanning, fuzz testing, and penetration testing.1

Specifically, regarding automotive security testing, “Security Crash Test—Practical Security Evaluations of Automotive Onboard IT 
Components” provides a comprehensive overview of various testing methodologies.2 One extremely powerful testing approach 
is fuzz testing, which allows developers and testers to identify unknown vulnerabilities in their systems and components. Fuzz 
testing is a type of test approach in which malformed or “out-of-specification” inputs are provided to the system under test (SUT), 
which is then observed to detect any exceptions or unintended behavior. 

Currently, there is increased development in the areas of connected cars and autonomous driving. There is also a shift toward 
software-defined vehicles, which means vehicle functionalities that had been distributed across a larger number of electronic 
control units (ECUs) are instead consolidated onto fewer high-performance computers (HPCs). These are software-heavy 
solutions, so they can contain multiple operating systems such as AUTOSAR Adaptive Platform and Linux/Android, and they can 
execute a number of different applications, including providing functions for autonomous driving, infotainment, digital cockpit, 
gateway and connectivity. Since some of these applications will interact with the externals of the vehicle, they are very attractive 
targets to attackers. They are also more prone to erroneous or malformed input coming from systems or the environment that 
is out of the control of the vehicle or system manufacturer. Therefore, it is extremely important to perform fuzz testing of these 
types of systems to ensure security, robustness, and safety.

Several automated tools can perform fuzz testing on automotive systems; that is, they support the relevant protocols to 
communicate with the SUT. As such, a simple approach to fuzz testing is to use in-band instrumentation to monitor the 
communication channel that is being fuzzed. However, one challenge with this approach is that it is often difficult to instrument 
the SUT to determine whether there was an exception on the SUT or whether the SUT failed and crashed. Moreover, since testing 
is typically performed as a black box, it is difficult to gather enough information from the SUT to determine the underlying root 
causes for the exception or failure. This information would help developers of the system find and fix the discovered issues more 
quickly and accurately.

Previous research has shown that it is possible to perform efficient fuzz testing of deeply embedded ECUs by instrumentation 
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using hardware-in-the-loop (HIL) systems.3,4 The solution presented in that research describes how to monitor the behavior of 
the ECU under test by measuring the analog and digital signals generated by the ECU in the HIL system. This integrated solution 
provides various ways for the HIL system to determine whether there is an exception on the SUT and can detect exceptions that 
would be undetectable if one were observing only the protocol being fuzzed. For example, if a controller area network (CAN) bus 
is being fuzzed, the target ECU may misbehave and generate analog or digital output to erroneously try to control an actuator. 
This unintended behavior would be missed if only the CAN bus were being observed. By instrumenting the ECU with a HIL 
system, it is possible to detect this abnormal behavior.

By contrast, in this paper, we focus on fuzz testing software-defined vehicles, specifically externally facing HPCs such as 
infotainment systems and connectivity units. We introduce the Agent Instrumentation Framework, which can be used to better 
instrument these software-heavy systems to allow for more efficient and accurate fuzz testing. That is, for these types of 
systems, additional approaches can be taken to improve instrumentation. Since these systems are based on operating systems 
such as Linux and Android, 5,6,7 it is possible to collect information from the SUT to determine whether any exceptions were 
detected during fuzz testing. Additionally, more details about the detected exceptions can be fed back to the fuzz testing tool and 
stored in the log file. This additional information helps developers better understand and identify the root cause and eventually fix 
the problem.

Background and problem statement
Many automotive organizations have made fuzz testing a mandatory step in their software development process or are 
moving toward doing so. In industries such as telecommunications, fuzz testing has already been integrated into the software 
development process and proven to be an effective approach to identifying bugs and vulnerabilities quickly. These target 
systems are typically easy to instrument by monitoring just the same protocol that is being fuzzed. This approach is common 
when fuzzing IT solutions such as a web server or a specific communication library.

In many cases, monitoring the same protocol that is being fuzzed is effective. For example, monitoring HTTP requests and 
corresponding HTTP responses could help identify potential unknown vulnerabilities in a web server. Furthermore, the famous 
Heartbleed vulnerability (CVE-2014-0160), which was found by fuzzing the OpenSSL library, was identified by monitoring the 
responses to the heartbeat request message.8 By contrast, automotive systems are often more complicated and interconnected 
with other systems and therefore not easy to instrument. As a result, without proper instrumentation, many unknown 
vulnerabilities and potential issues cannot be identified on these systems.

But as already mentioned, without proper instrumentation of deeply embedded ECUs using HIL systems, several potential issues 
go undetected. Similarly, without proper instrumentation of HPCs, numerous potential issues go undetected.

Typically, when fuzz testing a specific protocol, such as fuzz testing over Wi-Fi or Bluetooth on a connectivity unit, 
instrumentation occurs over the same protocol being fuzzed. In other words, the SUT is being monitored over the same protocol 
being fuzzed. This limited in-band instrumentation could result in several issues going undetected, as shown in Figure 1.

Figure 1. Examples of issues on the SUT that are undetected over the fuzzed protocol.

One issue that can go undetected during fuzz testing is memory leaks. During fuzz testing, messages sent over the protocol 
being fuzzed are processed by the SUT. In this example, the SUT processes the fuzzed messages correctly, and by instrumenting 
just the protocol being fuzzed, there is no indication of any issues. However, the processing of the fuzzed messages is causing 
memory leaks in the application processing the messages. If the fuzz testing is run long enough with perhaps a certain type of 
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message, it might be possible to detect an exception over the protocol that is being fuzzed—for example, a response is slower 
than expected or a response is missing. However, it would normally be extremely difficult to identify what caused this behavior 
without investing significant time analyzing all the communicated messages over the protocol. By contrast, being able to detect 
the memory leak directly on the SUT after the first fuzzed message that caused the memory leak is much more efficient and also 
allows the developers to pinpoint the cause.

Another issue that could be missed during fuzz testing is when a certain fuzzed message causes an application to crash. But 
the application restarts quickly, and by the time the instrumentation over the communication protocol occurs, the application 
seems to be responding correctly and the exception (i.e., the crash) is not correctly identified. Functionally, this behavior may 
be acceptable since from a user’s perspective, everything seems to be working as it should—the application is up and running 
fast enough that the crash is not noticeable to the user. However, this exception may lead to negative effects on the SUT over 
time, such as zombie processes or core dumps that eventually cause the system to crash or behave in an unintended manner. 
Alternatively, an attacker might be able to identify the messages causing the crash. If the vulnerability is exploitable, an attacker 
could craft a specific message that could allow remote code execution. Since the application would not crash, it would also not 
be restarted, and the attacker would have full control.

These example issues could lead to vulnerabilities and bugs going undetected. Although fuzz testing is typically a black box 
approach, developers and testers sometimes have access to the internals of the SUT (e.g., Linux and Android), which allows 
them to run scripts to help identify exceptions. That is, more efficient and accurate fuzz testing might be achieved by employing 
a gray/white box approach where agents placed on the SUT assist with monitoring through external instrumentation. We present 
this approach in more detail in the next section.

Overview of the Agent Instrumentation Framework
The Agent Instrumentation Framework provides the fuzzer with detailed instrumentation data from the SUT. This data can 
be used to determine the fail/pass verdict of a test case. It also provides the tester with valuable information from the SUT, 
increasing the actionability of any found issues.

As no two SUTs are the same, we designed the Agent Instrumentation Framework to be modular and allow for the quick creation 
and adaptation of its functions. The software modules running on the tested system are called agents. The main purpose of an 
agent is to perform a single instrumentation task and feed this collected information back to the fuzzer. However, to automate 
the fuzzing process and allow for more-complex, in-depth instrumentation, an agent may also execute functions during other 
times in the execution of a test case.

It is important that an agent perform no more than a single instrumentation task. If an agent were to collect too much data to 
base its verdict on, a tester using the framework would have to dissect the reason for the failure by searching through the log 
files. Additionally, not every SUT offers the same functionality that can be instrumented. Making the agent compatible with 
different configurations and scenarios would slow down testing and possibly require constant modification of the agent.

We designed the framework with the capability to configure, launch, and control multiple agents with its own configuration 
simultaneously and automatically. This flexible modular approach makes it possible to use multiple (custom-created) agents, all 
running with different parameters on the SUT.

Requirements, architecture, and configuration
The main goal of the Agent Instrumentation Framework is to find unknown vulnerabilities by using more-advanced 
instrumentation. Therefore, it is inevitable to shift slightly away from a black box approach when testing in-vehicle infotainment 
(IVI) systems and connectivity units. Depending on the types of vulnerabilities the user is seeking, they might need to access the 
operating system running on the SUT so that an agent can perform its task correctly.

Numerous papers on embedded device security have made clear that gaining access to the operating system of an IVI or 
connectivity unit is a trivial task. Remote communication with the OS can be done via the built-in wireless communication 
technology, serial, or USB to Ethernet converters. Describing how to access and set up communication with these systems is 
outside this paper’s scope.

The Agent Instrumentation Framework was written in the popular Golang programming language, which has a wealth of 
available libraries that offer great flexibility in writing agents. In addition, Golang can be statically (cross-) compiled to allow 
the framework to be run on virtually any embedded architecture. The framework provides binaries for x86, AMD64, ARM, and 
ARM64.
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The framework’s focus is increased accuracy and extended instrumentation features, which enable the fuzzer to pinpoint an 
event to a single test case. For this reason, the agents included in the framework all operate synchronously to the test case 
execution.

Agents are run in-line with the fuzzing session, which adds overhead to each test case executed, depending on the speed of the 
agent’s functionality. The user might decide to run an initial set of test cases with fewer agents configured to get a higher- level 
indication of SUT failure, and then enable more agents to narrow the cause of failure to a single issue. Therefore, keeping the 
agent’s tasks minimal and precise is essential to the overall effectiveness and duration of a fuzzing session.

Consider a buffer overflowing on an infotainment system, slowly building up to a measurable failure over 1,000 test cases. Using 
a fuzzer with protocol-specific instrumentation would only give some indication of failure at test case 1,000, when the actual 
failure occurs. By contrast, an agent running synchronously could determine the cause to be, for example, test cases 143, 376, 
and 1,000 (where test cases 143 and 376 indicate some sort of exception but do not yet lead to a full failure).

Figure 2. Agent framework architecture

Agent monitor deployment
The Agent Instrumentation Framework is distributed as a single binary for a variety of platform architectures. The binary, when 
run, will act as a server and listen for incoming connection requests from our fuzzing platform of choice, the Defensics® Fuzzing 
from Black Duck. Defensics already allows users to easily extend the instrumentation features offered by default, including 
protocol-specific RFC-complaint sequences, SNMP, syslog, and functional protocol checks. The framework further extends those 
capabilities.

The monitor server implements a REST API in a web server, which is started by supplying the server argument. Traffic between 
Defensics and the framework is secured via the following options:

• HTTP server is run in a random port.

• HTTP is always protected by TLS.

• HTTP is protected by a self-signed X.509 certificate. The certificate is provided to the client as console argument upon starting 
the monitor server.

• HTTP is authenticated by a bearer token. The bearer token is provided to the client as a console argument. 

The monitor server comes with several configuration options, further detailed in the help test when running the server with the 
 --help argument. These options provide greater control over the logging, encryption, and CLI configuration, as well as 
information on license usage of the project.
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Figure 3. Agent monitor configuration options

The agent monitor server can be deployed in the following ways:

• Deployment option 1: On the same system as the fuzzer. This could mean that the fuzzer and the SUT reside on the same 
machine, or that the agent created by the agent monitor doesn’t require presence on the SUT. An agent could interact with an 
API providing information on which verdict decision are made by the agent’s logic.

• Deployment option 2: On the same system as the SUT. This is the most common deployment, as agents created by the agent 
monitor often require interaction with file systems, daemons, or other OS structures and information sources.

• Deployment option 3: On systems other than the SUT. Often content from test cases impact applications and technologies 
outside of the SUT. Multiple agent monitors can be started in different locations, all feeding back information to Defensics 
during a fuzzing session.

Creating agents
Once an agent monitor has been started by calling the binary with the server argument, Defensics can connect to it and 
deploy and configure one or more agents dynamically. These will be automatically started and perform their functions based on 
instructions from the agent monitor. Depending on the deployment, there are two possible configurations.

• Start local agent server automatically: For deployment option 1.

• Connect to manually started server: For deployment option 2 and 3.

For the second configuration, a CA certificate and an authentication token must be generated by the agent monitor through the 
generateCerts argument. Alternatively, it is possible to use an insecure connection by supplying --insecure as argument.

The Fetch available agents button will query the agent monitor for all available agent types. It’s also possible to create your own 
custom agents and compile them into the agent monitor binary. Choose the agent from the drop-down list, and it will be created 
with the configuration provided.
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Figure 4. Agent monitor configuration in Defensics

Custom agent development
There are several agents included in the Agent Instrumentation Framework by default, extending the default protocol-specific 
instrumentation present in fuzzers. The default type of instrumentation usually involves the execution of a valid RFC-complaint 
sequence of messages in every test case, or even basic ICMP messages to verify the SUT being alive.

You can add your own agents to the framework by implementing them as plugins. The agent monitor communicates 
with custom agents through a gRPC API using either a UNIX socket (Linux, MacOS) or a TCP socket (Windows) as the 
communication channel. API calls match instrumentation events (e.g., instrumentation calls an API method for instrumentation). 
This is implemented using Hashicorp’s go-plugin. The framework includes a solution in which the gRPC communication has 
been implemented already using Golang. You only have to implement the agent interface to add custom functionality to the 
framework.

Included agents
The Agent Instrumentation Framework comes with several built-in agents. A description of their usage and features is provided 
here. For more information please refer to the Defensics protocol suite of choice.

LogTailerAgent

Figure 5. LogTailerAgent configuration options
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The LogTailerAgent monitors a log file after it has been created. A Golang regular expression can be used to detect errors in the 
target system. If a line written to the log file matches this expression, instrumentation failure is generated from that line.

FileMonitorAgent

Figure 6. FileMonitorAgent configuration options

The FileMonitorAgent looks for the creation of files in a directory. A Golang regular expression can be used to match file names. 
The name of the target file must match the expression for the operation to generate instrumentation failure. For example, if this 
setting is assigned the value AB, the creation of a file named ABB in the directory specified by the ‘watched directory’ setting 
triggers instrumentation failure. The creation of a file named ACC in the same directory does not. If the checkbox is selected, 
files will be removed and stored in the agent work directory for future reference. The purpose of this setting is to allow testing to 
continue in cases where an existing file would block files to be created on future errors.

ProcessMonitorAgent

Figure 7. ProcessMonitorAgent configuration options

The ProcessMonitorAgent monitors the state of a process. The agent can either start the target process or monitor an already-
running process. The instrumentation method gives a fail verdict if the target process is down, restarted, or turned into a zombie 
process. Process monitoring daemons often restart a crashed process within milliseconds, which would otherwise not be 
caught be normal instrumentation. This agent will catch such events and more, such as SUT process logic in the case of client-
side testing.

In case of an existing process, values provided are matched to the names of the processes running on the target system. Partial 
matching is supported, so there’s no need to specify the full command line of the command. The process can be managed, 
meaning that the agent will restart the target process in case of instrumentation failure or after each test case if the Always 
restart option is used. Additionally, the process can be monitored for exceeding a predefined memory threshold.

This agent has several other advanced workflow options for the injection and instrumentation of Defensics file format suites. 
There are Defensics suites that generate fuzzed files instead of fuzzed network traffic, and command execution is required 
to parse these. The ProcessMonitorAgent can automatically grab the generated fuzzed content from a TCP server or directly 
execute a command when the fuzzed content has been written to the file system.
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SanitizerProcessMonitorAgent

Figure 8. SanitizerProcessMonitorAgent configuration options

The SanitizerProcessMonitorAgent can find memory addressability issues and memory leaks in software, using Google’s ASAN 
framework. This allows us to find issues such as

• Use after free (dangling pointer dereference)

• Heap buffer overflow

• Stack buffer overflow

• Global buffer overflow

• Use after return

• Use after scope

• Initialization order bugs

• Memory leaks

To operate this agent correctly, you must compile the target software with additional compiler flags, which are only available 
on Linux and Mac. In addition to all options available in the ProcessMonitorAgent such as file format and memory threshold 
support, ASAN and LSAN options can be set for more fine-tuned configuration. In some scenarios it’s required to terminate the 
target process completely, which can be done via the Stop process for instrumentation feature.

This agent allows for very precise and in-depth instrumentation of a target application, but it also adds some overhead during 
test case execution. It is advised to deploy more advanced agents in a parallel test setup and without any other instrumentation 
when executing large number of test cases.
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KubernetesAgent

Figure 9. KubernetesAgent configuration options

The KubernetesAgent allows Defensics to connect to a Kubernetes cluster and monitor pods. This agent does not need to be run 
on the SUT itself as it communicates with the external Kubernetes API. The agent runs on the same system as the agent monitor 
and executes its queries from there. The configuration can automatically be read from the kubeconfig file and further filtering 
can be done through context names, name spaces, and label selectors.

The namespace provided will be monitored for resource changes. Further monitoring limits can be set with the Label selector 
configuration. Multiple labels can be given as comma-separated list, but if none are given, all supported resources within that 
namespace are monitored.

The KubernetesAgent can detect pods going down and restarting, which triggers test case failure. As Kubernetes deployments 
focus often on redundancy, such an event might otherwise go unnoticed. Kubernetes logs are also included in Defensics log files 
for easier remediation and backtracing.

Implementation and test results
To demonstrate the effectiveness of the Agent Instrumentation Framework at finding unknown vulnerabilities in infotainment 
systems, we used the framework with various agents during fuzzing runs. We used the Defensics fuzzer from Black Duck, which 
allows users to easily extend the default instrumentation features, including protocol-specific RFC-complaint sequences, SNMP, 
syslog, and functional protocol checks.

Our test targets were infotainment systems from various vendors, including OEM and aftermarket solutions. One of our targets 
was an extracted operating system running in an emulated environment.

A typical infotainment system supports a wide variety of protocols, and the addition of more functionality and connectivity 
continues to expand the attack surface. A full attack surface analysis is outside the scope of this paper, but the interfaces and 
protocols we focused on were mostly those accessible to the outside world. 

Bluetooth fuzzing
Defensics includes a scan option for locating and pairing with nearby Bluetooth devices and configuring test suites. For a scan 
to successfully locate a Bluetooth-enabled device, the device has to be discoverable, a setting that has to be enabled manually in 
most cases.

The scan will return a list of all discovered devices in its vicinity. Further information about the supported services and profiles 
enabled in the device can be obtained using the service discovery function for the desired device. This information can then be 
automatically imported into Defensics, and test cases will be generated after an interoperability test of the sequences used by 
the protocol.

Bluetooth often contains payloads for various applications and runs with low-level rights on an infotainment system. Therefore, 
its processes and daemons were a good candidate for our agents to focus on. Bluetooth is also used for critical operations in 
and around the car, such as unlocking doors and accessing vehicle information.
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Figure 10. Defensics Bluetooth device scanning dialog

Test results

In our test against an infotainment system, we found a critical vulnerability. A single frame containing a buffer overflow anomaly 
caused the main Bluetooth kernel module to crash. This can be seen by monitoring the bluetoothd daemon process during the 
execution of the test case, with the use of the ProcessMonitorAgent. The device had a daemon watchdog that quickly restarted 
bluetoothd, so we would not have picked this up without the extra instrumentation.

The combination of the anomaly being an overflow case and causing core kernel modules to crash should be cause for concern, 
as this could potentially lead to further exploitation of the target process running with root rights. The agent caught the crash and 
copied stderr output to a local file on the Defensics host for further study.

Figure 11. Defensics instrumentation showing agent failure
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Wireless fuzzing
The 802.11 protocol family can use the Defensics FuzzBox WLAN scan feature, which automatically copies the required 
parameters to the corresponding settings fields based on the selected target device.

Infotainment systems can often create a wireless network in the car so that passengers can use their 4G/5G connections. 
Finding new vulnerabilities in the 802.11 implementation is an interesting target, as it could potentially give access to all devices 
inside the wireless cloud and be accessed from a larger distance than Bluetooth can.

Test results

During our testing session, we found a single frame containing a buffer overflow anomaly that caused several kernel modules 
to crash. Interestingly, this is a nonauthenticated frame so it could theoretically be sent out by anyone. The combination of the 
anomaly being an overflow case and causing core kernel modules to crash should be cause for concern, as this could potentially 
lead to further exploitation of the target system.

Defensics would not have detected this vulnerability, as the kernel watchdog restarted the affected modules immediately without 
a noticeable drop in connectivity. We could have caught the creation of a core dump with the FileMonitorAgent if we enabled that 
functionality in the kernel, or the ProcessMonitorAgent to monitor processes affected by the kernel crashes. Instead, we simply 
used the LogTailerAgent and found this issue by tailing syslog with the keywords “stack,” “crash,” and several kernel module 
names. The relevant syslog output is shown in Figure 12.

Figure 12. Syslog output during an 802.11 kernel module crash

Fuzzing MQTT
Lightweight protocols such as MQTT have several advantages over traditional protocols thanks to their simplicity and lightweight 
nature. MQTT is a simple protocol that lets an embedded device publish and receive messages in the cloud. It has minimal 
packet overhead compared to protocols like HTTP and is therefore very efficient, lending itself to low-power environments. 
MQTT is also used in automotive components.

As we had access to the source of the MQTT broker we tested against, we could use the SanitizerProcessMonitorAgent to test 
for memory addressability issues and memory leaks. To do this, we recompiled the code with additional compilation flags to 
enable Google’s ASAN instrumentation controlled by environment variables the agent uses during execution.

Test results

We found a memory leak in the popular MQTT broker Mosquitto using the SanitizerProcessMonitorAgent. This vulnerability has 
since been reported and fixed. When running all test cases generated by Defensics by default, it is impossible to detect this issue 
without any additional instrumentation. An example of a correct MQTT Connect message as defined in the RFCs is presented in 
Figure 13.
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Figure 13. A correct MQTT Connect message in Defensics

The agent reported several failing test cases, after which it continued execution. The test cases all used a similar anomaly—an 
underflow anomaly in which bytes of the packet were removed before it was sent to the SUT, as illustrated in Figure 14.

Figure 14. Example MQTT anomaly in Defensics

In each test case, the underflow was a byte larger than the previous. In total, five test cases failed, according to the agent we 
used, as shown in Figure 15.

Figure 15. Five test cases marked as failing in Defensics
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The detailed log showed that for each byte increase of underflow, the number of leaked bytes increased by one as well. The 
agent also provides Defensics with a trace of the leak, presented in Figure 16.

Figure 16. Memory leak with added detail provided by the agent

File format fuzzing
A popular function of infotainment systems is the ability to play rich media content. Simpler systems play only audio file formats, 
but more expensive systems with larger displays can also play video and image content. The file format parsers on these 
devices are vulnerable to exploits embedded in the inputs they receive.

Defensics has several file format fuzzers that can generate fuzzed versions based on the full specifications of various popular 
file formats. It can simply write these to a disk or use other logic to have these sent to software inputs and determine a verdict.

Test results

To test audio and video playback functionality, we used Defensics built-in file format logic to send fuzzed files to various 
infotainment systems and automatically play them, and then determined the verdict using agents. A combination of agents 
could have been used here to instrument various sources, but to keep our setup as minimal as possible we opted for the 
ProcessMonitorAgent.

Figure 17. Defensics MP3 file format suite configuration 
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The configuration of the file format suites is very straightforward. Each generated (fuzzed) file will be exported with the option 
Outbound TCP connection, which means that it will be sent over TCP to the specified IP address and port combination. The port 
here is the same as the one configured in our ProcessMonitorAgent running on the SUT.

Figure 18. ProcessMonitorAgent configuration

When a test case is executed, the file will be transmitted to the agent running on the SUT, as we enabled file suite logic in the 
agent’s configuration. We also specified the command required to have our target process parse the fuzzed file. In the Target 
process option, we used  “!!!inputfile!!!” as a placeholder for the file name used as an argument to the target process, which is 
handled by the agent’s logic during execution. The instrumentation is automatically done by the agent’s default configuration.

Figure 19. ProcessMonitorAgent’s reported failing test cases

During our testing effort we observed several crashes. The effects on the infotainment systems we tested included process 
crashes, kernel panics, and in one case, a full reboot. These severe issues were found while running only a small subset of the 
test cases available in our audio, video, and image file format suites.

http://www.blackduck.com


blackduck.com  |  15

Conclusion
In this paper, we introduced the Agent Instrumentation Framework and explained how it can be used to improve the fuzz testing 
of HPCs, specifically focusing on infotainment and connectivity units. We explained how to better instrument these target 
systems to allow for more efficient and accurate fuzz testing. One or more agents deployed on the SUT can be used to collect 
additional information to determine whether test cases on the SUT caused an exception. This information is also provided to the 
fuzz testing tool and stored in the log file, helping developers identify the underlying root cause of the issues detected and fix 
problems more efficiently. To show the effectiveness of the proposed framework, we built a test bench based on this approach 
and performed fuzz testing of several SUTs. We presented our findings and highlighted several examples where issues on the 
SUTs would not have been detected without agent instrumentation.

The Agent Instrumentation Framework is suitable for HPCs, which typically use operating systems providing more functionality 
such as Linux and Android, making it possible to run agents on the SUT. We believe that the growth in connected cars and 
autonomous driving, which continues to drive large volumes of software development in the automotive industry, coupled with 
an increasing awareness of cyber security in the automotive development process, will lead automated fuzz testing to become a 
mandatory step for these types of systems. Our proposed framework can help support automated fuzz testing for SUTs running 
richer operating systems such as Linux and Android.
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